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Abslracl. Bhnard-Marangoni convection, in COntainFrS with large aspect ratio, exhibils 
space-filling cellular stmctures, highly deformable, but crystallized. They contain disloca- 
tions and grain boundaries generaled and mwed by elementary lopological transforma- 
lions, and are subjected to a weak shear strw due to the earth's rotation. The cellular 
S ~ N C ~ W ~  and its fluctuations are analysed from a crystallographic viewpoint, by using two 
complementary approaches One is a global analysis of cellular StNClures in cylindrical 
symmeuy. Their StNclurai srabilily and defect patlem are obtained as lopological mode- 
locking of a continuous structural parameter. The ather, a local. molecular dynamics 
of the cells, gives a realistic parametrizarion of the forces and lhe transformarions by 
generalizing the Voronoi cell CORStNCtiOn in one exlra dimension. 

1. Introduction. Topological representation of hydrodjnamic patterns 

This is an attempt to solve a structural problem of hydrodynamics by using crystallo- 
graphic methods and concepts, in terms of cells, topological defects like dislocations, 
their interaction and their motion. Conversely, it can be read as an application of 
crystallography to extremely soft and deformable, albeit crystalline materials. Such 
materials are known to exist: colloidal crystals [l], bubble rafts [2], magnetic bubbles 

Here, we shall investigate the cellular structure produced by Benard-Marangoni 
[4] convection. A fluid heated from below exhibits convection motion above a certain 
temperature threshold. The hotter fluid rises by buoyancy, and is drawn towards the 
colder regions of the (upper) free surface by their stronger surface tension, where it 
goes down. When the size of the container is much larger than the thickness of the 
fluid (approximately the cell size), one observes a two-dimensional cellular pattern (a 
froth). On the free surface, the fluid propagates from the hotter cell centres to the 
colder vertices of the froth. 

Hot points repel each other like soft disks. Some cells divide. Just above the 
convection threshold, the structure is ordered (one recognizes reticular planes, dislo- 
cations, etc), and one anticipates a perfect hexagonal structure (triangular packing of 
repelling disks) for the ground state, as was indeed pointed out by Bknard himself [5]. 

131, etc. 

t Permanent address: Blackeft Laboraroly, Imperial College, London SW7, UK 
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However, this perfect hexagonal structure is never observed when the upper surface 
of the Auid is free (Btnard-Marangoni convection)t: 

(i) There are always defects (pentagonal and heptagonal cells), well in excess of 
the 6 pentagons required by topologyt 

(ii) The whole structure rotates, with the period of Foucault’s pendulum [7]. 
Moreover, the trajectory of the centre of an individual cell is an outgoing spiral [7], 
suggesting that energy is dissipated outwards from the middle of the container, where 
new cells are formed. This indicates that cellular structure and individual cells are 
sheared by the earth’s rotation, through tNe Coriolis force acting on the free (upper) 
surface of the moving fluids. 

Feure 1. Elementary topological transformations: (a) Neighbour switch (n). (b) Cell 
disappearance (n). 

Dissipation of s h e a  in crystals is carried naturally by dislocations gliding along 
planes. Cylindrical symmetry, imposed by Coriolis forces and by the shape of the 
container, should make dislocations align and glide on concentric circles. An indirect 
proof of the presence of dislocations is the observation that, while the cell rotates 
about itself with the period of Foucault’s pendulum, it undergoes sudden jogs of 
approximately 2 ~ / 5  (when the spiral trajectory intersects a glide circle) [7]. 

Toplogical defects, dislocations gliding to dissipate shear strain, are crystallo- 
graphic concepts. All these features are manifest in the convective cell structures, 

t I have been informed by one of the relerecs that perfect hexagonal cellular patterns have been obtained 
in [6]. Now Bodensehalz a a1 do not claim perfect hexagonal order in their abstract (the only data 
published), which pastdates the redaction of this paper. Ciliberto, Pampaloni and Perez-Garcia obtain 
defect-free hexagonal patterns (figure 1 of reference [6b]). However, both these expenmenu (61 are 
made under very ditIerent boundary conditions (Rayleigh-Benard instability: Ruid bounded below and 
above by rigid, thermally conducting plates) from those at Marseille 171 (fm upper suriacc of the fluid 
Benard-Marangoni instability, driven chiefly by surface tension inhomogeneities at the free surlace, as 
suggested by Binard in his original paper, and confirmed by gravity-free experiments in Apollo XIV 
and XVll spaceships 141). it is well known that the pattern morphology and stability are different in 
both cases [4]. Notably. unlike Benard-Marangoni’s, Rayleigh-Benard convection patterns (rolls, squarer 
or hexagons) can be defect-free (cf figures 6 and 8 of reierence [4a], and flgure 8 of reference [4b]). 
Also, the patterns in [6] are not sheared (they are not even rotating as far as I know); once selected, 
their direction is ked in the closed container. There is no need for dislacations, except to alleviate the 
frustration imposed by cylindrical symmetry. This is done by boundaries belween hexagonal and rolls 
patterns (figure 1 of reference [6b]). Contrast this with 171 where the pattern is under shear and rotating 
with respect to the container. See footnotes. 

It is also true that the Foucault period of the StNClUre was proposed with a question mark in the title 
[7]. The question mark was requested by the referee and the authors were happy to comply (Pantaloni 
J, private communication). But there can be no doubt that the structure is sheared: See figures 2, 4 and 
5 of reference [7], and footnotes. 
$ The free surface of a fluid inside a cylindrical container is topologically equivalent to a half.sphere. 
3 Recall lhat the Foucault pendulum is not rotating in the inertial frame, 50 that its direction of oscillation 
rotates in the non-inertial (laboratory) frame with an angular velocity equal and opposite to that of the 
frame illell. Accordingly, the cellular structure, if uncoupled to the container. would rotate as a whole 
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except the glide circles which have yet to be obsewed. We can therefore translate a 
problem of pattern formation and stability in hydrodynamics (described by hydrody- 
namic field equations which are complicated to write down and to solve) into a much 
simpler many-body problem. The bodies are discrete objects (the cells), which repel 
each other. We want to describe the ground state and elementary excitations. This is 
a standard problem in crystallography. but here we have (a) cylindrical symmetry, (b) 
a very soft (deformable, malleable) structure; (b) implies that topological defects can 
be created and moved easily, while (a) imposes the presence of these defects. The 
ground state must be structurally stable, i.e. invariant under small fluctuations of its 
parameters [lo]. 

The basis for the work presented here is the description of the structure and 
evolution of cellular networks (froths, tissues or foams) and of their evolution. This 
topological, or many-body analysis of a structure and its defects is a well established 
technique in froths [ll]. Application of these ideas to describe BBnard cellular 
networks started in the early 198os, essentially in the Marseille group ([7, 8, 12, 131 
and references therein) but it is still fairly controversial, as the author has discovered, 
essentially because it by-passes the standard, continuous hydrodynamic equations to 
investigate the stability and structure of interacting, space-filling entities (the cells). 
Our first paper [lo] appeared in 1984, but there has been considerable, recent progress 
on the structure alone to justify another look. On the other hand, the transposition 
of the techniques and ideas in the evolution of cellular networks and froths [14] to 
describe the dynamics of BBnard networks is new, and is likely to be challenging, 
even if only sketchy in this paper. This paper was presented as a poster at the IUTAM 
symposium on Fluid Mechanics of Stirring and Miuing, La Jolla, CA, August 1990, 
and has appeared as an abstract in the proceedings [IS]. 

with the period of Foucault's pendulum (approximately 36 h in Maneille (lalilude 42' N)). The  
lrajecloly of an individual cell would be a circle in the non-inertial frame. There would be no shear. 

Experimentally, lhere is a Row of energy from the centre lo the rim of the conlainer, which is 
slrongesl if the rim is made of lhermally insulating material, and weakest if il is a melal in thermal 
contact with lhe healing plate. This gives rise to a radial component of lhe molion of every individual 
cell, whose trajectoty is now a spiral, as observed [7]. The combination of circular and radial molions 
implies lhat the slruucu~re is subjecled LO shear. 

Suppose the equalion of molion for the centre of a cell T lo be lhal of a spiral, 

(with a possible dependence of w on Irl). Consider a (locally hexagonal) latlice of these cells. If the 
strain tensor associated with displacement of lhe cells within the time intelval dt  is equal to fi(r)S.,,  
lhen the structure is not sheared by the molion. This is the case if and only if the transformalion 
r ( t )  -+ r(t  + dt) is conformal (i.e. it is represenled by an analytic function in the complex plane { v ) .  
Cauchy-Riemann relalions make lhe o8-diagonal element of the Sirain lensor vanish). In a spiral laltice 
(9), absence of shear requires a = cst, independent of [V I .  This conslanl can be either a = 0 (no radial 
dissipation of energy, circular cell lrajectories), or a # 0, with a logarilhmic spiral for the cell trajectoly. 
The spiral latlice is, topologically, perfectly hexagonal (the coordinates of its cell centres given by the 
complex variable w,  can be obtained from a regular hexagonal lattice (2) by the conformal transformalion 
w = Aexp(- ibz) ,  where A and 6 are constants [S, 91). but the cell sizes increase outwards. There are 
no defects, and no grain boundaries. A spiral lattice of equal-sized cclls requires circular grain boundaries, 
on which the transformation W ( I )  is not conformal, and which are accordingly loci of shear strain. 



934 N Rivier 

2. Elementary topological transformations 

Structural defens are created and moved by elementary topological transformations 
[ll]. Consider a two-dimensional cellular froth with C cells, separated by E edges 
or interfaces, meeting at V vertices. E and V are secondary, topological elements 
partitioning space between the physical hot points C. Edges are free to expand or 
shrink at the mercy of the motion of the hot points, leaving the structure topologically 
invariant until one of them disappears, inducing an elementary topological transfor- 
mation (EW) (figure 1). There are only two types of  ET^, neighbour switching (TI), or 
cell disappearance (Tz), and its inverse. Cellular division or mitosis (the topological 
agent of growth of biological tissues), is the composition of with a few TI. It 
is observed, for example, on Lake Natron [16] a soda lake in Tanzania, and in the 
process of formation of Benard-Marangoni cellular structures. 

Vertices are tri-valent (coordination z = 3) except at the critical point of a 
TI transformation, a ‘Four-corner Boundary’. Not only structural stability, but also 
dynamics imposes z = 3. Repelling hot points triangulate space, which is partitioned, 
for example, by drawing perpendicular bisectors. The three bisectors (E) of a triangle 
meet at a point (V), which is z = 3. 

Euler’s identity [ll], 

C - E + V = l  (1) 

for a finite planar cellular froth (the cell at 03 is not included), and valencies relations, 
ZV = 2E, (n)C = 2E (each edge joins 2, z = 3-valent vertices, and separates 2 
cells, (n)-sided on average), imply that 

(n) = 6 -(boundary corrections). (2) 

Nearly all cells are hexagonal, as observed by Bhard [SI. Also, 6C = 2E = 3 V .  
ETT change the number of sides of the cells involved in the transformation. A 

five- (respectively seven-) sided cell is a positive (negative) disclination. (A pentagon 
is produced in a hexagonal lattice by cutting out a 2 ~ / 5  wedge and re-glueing. 
The plane buckles into a cone, and the pentagon is a source of positive curvature. 
Similarly, a heptagon is produced by adding a wedge, and is a source of negative 
curvature. The plane buckles into a saddle.) 

A dipole pentagon-heptagon is a dislocation (figure 2) (produced by cutting out a 
rectangular strip, and re-glueing. The plane remains flat-uncured-but it has a step. 
The source of the step is the dislocation). A single TI in a hexagonal froth generates a 
pair of dislocations, which glide apart upon applying shear Stress, by successive T1, Le. 
by a purely local process Similarly, one single cell division (figure 3) generates a pair 
of dislocations. Further divisions in the neighbouring cells make the two dislocations 
climb away from each other like a defecti$*e zipper, leaving behind a layer of new 
cells. Again, this is a local means of adding material (unlike the cutting scenario 
above). It is the way that our intestine grows 117). 

ETT are local transformations, which, like collisions in gases, keep the cellular 
network in statistical equilibrium. The observable manifestation of this local balance 
is given by Aboav’s relation [ll, IS]. 
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Figure 2. lbpological dislocation (pentagon-heptagon pair). 

Figure 3. Creation and climb of a dislocation pair by succsSrve cell divisions. 

3. The DAISY, ideal crystal in cylindrical symmetry [SI 

The ideal, infinite z = 3, planar crystal is a perfect hexagonal lattice. It does not 
have cylindrical symmetry. The ideal, z = 3 crystal with cylindrical symmetry is the 
DAISY, shown in figure 4. It is a computer construction (by a single algorithm given 
in equation (3)) of the structure of several composirae (composite flowers like daisies, 
asters, etc), which is indeed cylindrical and crystallographic ('atoms' are identical, 
s = 1 , 2 , .  . . florets, sprouting from a central stem and pushing out their elder 
brothers, labelled by larger s) [lo, 191. 

Flpre 4. ' h e  DAISY. Cells are all hexagonal prcept o = pentagon, + = heptagon, dipole 
o+ = dislocation. Grain boundaries are quasiclystalline. (From reference [lo]) 

~~~~~ -... 
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One notices immediately concentric circles of dislocations (dipoles 5/7) which are 
the glide circles necessary to dissipate shear. They are boundaries between perfect, 
hexagonal grains. It is well known that grain boundaries are array of dislocations. But 
here, the amy is quasi-periodic [20]. The perfect, hexagonal grains have reticular 
‘planes’ which are the visible spirals or parastichies in composite flowers. All but a few 
percent of compmilae have Fibonacci numbers of spirals 1, 1,2,3,5,8,13,21,34. .  . 
and the remaining few follow the similar h c a s  sequence 1,3,4,7,11,18,29 .... 
(The outer grains have higher numbers than the inner ones, running through the 
sequence in an automatic and self-similar fashion 18, IO, 191.) We have therefore 
a cylindrical cellular structure which is topologically stable (section 4) and universal 
(Fibonacci and Lucas sequences). This universality, noted by Leonardo, Kepler, 
Goethe . . . , remains the major outstanding puzzle of phyllolaxis (plant architecture) 
[8, 19, 211. 

Xvo-dimensional phase transitions (e.g. melting) are mediated by the unbinding of 
pairs of topological defects, dislocations (or vortices) and, possibly, disclinations (121. 
A representation (figure 4) of the ground state structure, emphasizing the position 
and function of topological defecn, is a prerequisite to understanding the Bhard- 
Marangoni structures observed experimentally, which have increasing amounts of 
disorder as the temperature increases above threshold. It is easy to melt the structure, 
harder to pinpoint the transition(s) [13]. 

4. Structural stability and universality of the D A I ~  

Fluctuations of a structure can be represented by a dynamical map; universality 
and stability of the structure are then consequences of universality and stability of 
dynamical maps. 

A crystallographic structure must be labelled and described by a local reference 
frame. In conventional, translationally invariant systems, the frame is the fundamental 
domain or unit cell, and each atom is labelled by the position of its unit cell (i.e. by 
D integers in D dimension), with, if necessary, an index giving its position within 
the cell. In cylindrical symmetry, we are limited to one integer s = 1 , 2  . . ., labelling 
each cell from the centre outwards (from younger to older florets). The cell’s centre 
is then given in cylindrical coordinates by 

O ( S )  = 2nXs 
T ( S )  = monotonic increasing function of s. (3) 

Cells are then drawn by democratic partition of space between centres (Voronoi con- 
struction [Ill: interfaces are perpendicular bisectors between neighbouring centres, 
and every point inside a cell is closer to this cell’s centre than to any others). This 
produces the DNSY of figure 4. The structure is parametrized essentially by one 
quantity, rhe divergence angle 7rX ,  X E 10, I]. The cells lie on a generative spiral 
r(t)/LZnX), not vkible in figure 4 because successive florets are not neighbours. (The 
pitch of the gcnerative spiral is smaller than the cell radius.) Only visible are the 
reticular spirals (parastichies), which are ordered as {As}. ({n) is the fractional part 
of n, n = {n) modulo 1. The ordering follows from the fact that equation (3), 
projected on T = es t .  is a circle map.) A minor adjustment in the function ~ ( s )  
straightens the spirals while retaining the ordering, glide circles, etc [SI. 
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Neighbours s, s + E,, have appropriately the same azimuth O(s + B,) N O(s), 
and X % A,/B,,,. If these were equalities (A rational), cell centres would lie on the 
same radii, and the Voronoi cellular structure would resemble a spider’s web [lo]. X 
is therefore irrational, and representable uniquely as a continued fraction, 

X = l/{cl + l /[cz + I/(cs + 1 / .  ..)I) = l/{cl + I / [ .  . . + l/c,l} = A , / B ,  

(4) 

(0  < ci,A,,B,,,,s E Zt are natural numbers). A , / E ,  is called the mth conver- 
gent to the irrational A. B, is the number of cells in a circular shell (one cell thick), 
or the number of reticular spirals. It labels neighbours. (A, is the number of turns 
in the generative spiral necessaly to fill the shell.) 

An hexagonal cell in a grain has six neighbours, and belongs to three families of 
reticular spirals. Its neighbours are labelled by three B,s, denominators of three 
convergents to A. Thus the local reference frame is the triangle of labelled neighbours 
(S+B, , , ,S+B, -~ ,S+B, -~)  toagivencell s (figure 5). Onegoesfroms tos+B, 
either directly, or jogging through the other two parastichies and the final label must 
be independent of the path and of the origin cell, s + E, = (s + Em-z) + B,-,, 
thus, 

E ,  = Bm-l + Bm-Z (5) 

which is the relation generating Fibonacci, Lucas etc, sequences. The triangular 
relation (5) is crystallographically central and overriding. 

Figure 5. Reference frame, showing labels of cell s and its neighbours, and demonstrating 
the triangular relation, equalion (5). 

A grain is characterized by the reference frame {B,, Bm-l, At a grain 
boundaly, two families of reticular spirals go through, and the third is replaced by a 
higher E,+, (better convergent), through dislocations which do indeed add material. 
There are two possibilities [S, 101, 

(i) { B , , B , , - ~ , B ~ - ~ }  -+ {E;~~,B~,B,-J 

(ii) {B,,B,,-~,B,,,-~} - { B ~ ~ ~ , B ~ , B ~ - ~ }  

with Bk+l. and B l t l  consistent with equation (5). Only the former gives the 
observed Fibonacci or Lucas phyllotaxis. X is then noble (IC;} = 1, i 2 io). Noblest 
is the golden mean I / T  = (1 - f i ) / Z ,  (io = l), generating the Fibonacci sequence. 

regular transition 

singular transition 
(6) 
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The singular transition involves intermediate convergents, ci # 1, and non-noble X 

Consider a given grain {B,, E,-,, Bm-*}, that is, a set of three rational con- 
vergents to A, with A J B ,  bounded by the other two. It can easily be shown 
that any X E]A,-,/B,-,,A,-,/B,_,[ generates the same ordering of B, 
successive cells or reticular spirals: s,s + B,-,,s + 213, -,,...( modB,), or 
S , S + B , , , _ ~ , . .  .( mod B,), clockwiseoranticlockwise, i.e. thesamestructure {As). 
This is a topological mode-locking. The structure is locked on that given by the ratio- 
nal convergent A,/B, ,  for any X within the interval ]Am-l/B,,,-l, A,,,-z/Bm-z[. 
The possible structures (A, /B,)  follow an incomplete devil’s staircase as a function 
of A, exactly as in conventional mode-locking of two coupled oscillators 1221 where 
the abscissa of the staircase represents the ratio of their natural frequencies, and the 
ordinate, the observed ratio, locked to rationals. 

At a grain boundary, it is necessary for the structure to lock on rationals with 
larger denominators B, - B,+, (6). (Recall that B, is the number of cells filling 
a circular shell. This number must increase as one goes outwards, in order to keep 
the cell size (approximately equal to fluid thickness) constant.) In ordinary mode- 
locking, the coupled oscillators achieve a finer tuning if instead of locking on pl/ql 
(one oscillator making p 1  oscillations in qt periods of the other, before the two retum 
in phase) or on p , /q , ,  they lock on the new rational frequency, 

[8, 101. 

(PI + P ? ) / ( 4 1  + rlz)  = P1/41 @ P ? / 4 ?  (7) 

(Farey sum). Note that the denominators q1 + q2 = q1 CB qz satisfy the triangular 
rule (5).  Equation (7) generates and orders all the rationals E [0,1] uniquely as in 
figure 6, the Farey construction 191. 

0 1 1 

Figwe 6. Farey construction of rationals. A triangle defina a grain, structurally locked-in. 

Figure 6 can be seen as a tiling by triangles, with a triangle representing grain 
{B,, B,-,, Bm-*}. A grain boundary forces a bifurcation. The triangle is replaced 
by either one of the two Farey offsprings, coinciding with the regular or singular 
transition of equation (6) (figure 7). 

It is easy to introduce a scalar weight measuring the strain necessaly to con- 
fine X within the interval yielding the required structure. This weight plays the role 
of an energy. Structure-conserving fluctuations of X can be represented generically 
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S i l S  7/11 

--t--.--l-i 
Fsom 7. Bifurcation at a grain boundaiy. Here, the regular transition is on the left 
(8/13x the singular transition on the right (7111). 

by dynamical maps (sending the interval into itself, with A,/B, ,  and the interval 
boundaries An-l/B,-l,  and Am-2/Bm-2 as fixed points), e.g. by homographic 
functions. Homographic functions with rational fixed points have remarkable prop- 
erties (they are involutions and the fixed points have marginal stability). The energy 
necessary to fix the structure is then a simple functional of the fluctuation map, exactly 
as a Ginzburg-Landau free energy is a function of some order parameter. 

An energy can similarly be associated with each alternative EST, ERT at a bi- 
furcation, and with the operation funnelling a divergence X from the ST side of a 
bifurcation into a regular transition (EF). One finds readily that ERT < EF < EST 
and this is sufficient to justify the universality (and the structural stability) of COM- 

positae, which always select the lowest energy alternative (RT) at every bifurcation 
encountered upon growth 1211. This preference has not been tested on BBnard- 
Marangoni structures as yet 

Either choice at the bifurcation is compatible with the triangular equation (9, 
and yields a grain boundary sequence of dislocations (D) and isolated hexagons (H). 
Dislocations are defects, sources of strain which repel each other, and their number 
is imposed by the convergents B, of A. A smooth, quasi-periodic sequence of D 
and H results [20, 231. Shear is absorbed by a dislocation glide on this quasi-periodic 
structure through a T1, as, 

(glide of the underlined dislocation by a cell's diameter). The action is then repeated 
on another dislocation, as in an ideally efficient, l / ~ - f u l l  parking lot (D are the cars, 
H the empty spaces). 

This concludes the global description of BBnard-Marangoni structures under 
shear. We have been able to accommodate structureconserving fluctuations. The 
lowest topological excitations are T1 on grain boundaries (S), which dissipate shear 
efficiently. The next lowest topological excitations are TI creating new dislocation 
pairs, at first near the grain boundaries, then within the grains. Next are cellular 
divisions which create dislocation pairs (figure 3) and additional cells. But, at that 
level of excitation, one should shift to a local description of the dynamics of cellular 
structures. 

. . . DQHDH . . . - . . . DHQDH . . . (8) 

5. Local dynamics of cells 

We now discuss the local dynamics of the cellular structure, not as a field theory, 
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but as a many-body problem where the cells (hot points) are the bodies, interacting 
through some reasonable repulsive two-body potential. We require that the represen- 
tation automatically generates a space-filling, cellular froth, and that E m  in the froth 
correspond to elementary local displacement of the bodies. 

A simple generalization of the Voronoi (democratic) partition of space between 
seeds (hot points) produces a froth with realistic structure (isotropic cells), capable of 
accommodating TZ or cellular divisions [14,24,25]. Consider circles instead of points 
as seeds, and define the (Laguerre) distance of a point P to a circle r (hypersphere 
in D > 2 dimension) as the length of the tangent to I? through P (power of P with 
respect to circle r). The locus of points at equal distance between two circles is a 
straight perpendicular lie, the radical axis (hyperplane if D > 2), which gene ra l i s  
perpendicular bisector to unequal circles. Like perpendicular bisectors in a triangle, 
the three radical axes of three circles are concurrent They are the interfaces of 
the Laguerre froth. The larger the circle seed, the larger its corresponding cell 
in the froth. Laguerre froth reduces to Voronoi's if all the seed circles are equal. 
Small fluctuations in circle radii already generate realistic cell shapes. Generalization 
to 3 or more dimensions is straightfonvard, as is the analysis of a section of the 
froth [24] (itself a Laguerre froth), important in the analysis of 3D polycrystalline 
aggregates in metallurgy (stereology). The dynamical evolution of the froth is much 
more manageable than its construction 1141. 

The radical axis between two circles of radii r1 and r2 depends on r: - T; 

only. This remark gave Rlley [I41 the idea of representing seeds as identical, ver- 
tical paraboloids (umbrellas) in one extra dimension, which intersect the horizontal, 
physical space as the Laguerre circles. The altitude of the physical plane is lixed 
but arbitraly. The umbrellas are the bodies of our problem, each specified by the 
three coordinates q = (2, z) of their apex. Here, z is the coordinate of the circle's 
centre in the two-dimensional physical space, and z ,  the height above physical space, 
measures the circle radius, z - i-', or the cell size. 

Now for the Em. The set of seeds looks like a Yosemite mountain profile (fig- 
ure 8). A paraboloid below the horizon (a seed too small) does not generate any cell 
in the froth. Conversely, a paraboloid which is too high (a seed too large) obscures 
smaller paraboloids nearby and gobbles up their representative cells. So, a R topolog- 
ical transformation occurs whenever the z coordinate of a paraboloid is pushed below 
the horizon. Conversely, when a new paraboloid rises above the horizon, it divides 
the cell containing its apex. TI transformations are produced by moving nearby seeds 
horizontally rather than vertically. ETT are therefore naturally induced by motions of 
the bodies, T1 by horizontal (2) motion, R or cell division by vertical (2) motion. 

Figure 8. The 'Yosemite' lhorizon of paraboloid seeds. The horizontal axis represents 
the physical plane. Seed q5 is below the horizon and does no1 generate a cell in the 
froth. From Telley (141. 
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There is a duality between cell seed paraboloids (umbrellas) and vertices of La- 
guerre froth, i.e. behveen hot and cold points in the convective structure [14]. Vertices 
can also be represented by the same paraboloid as the celi seeds, but inverted (open- 
ing upwards). The bottom q* = (z*,z*) of the inverfed paraboloid lies on the 
intersection of its three adjacent paraboloids. The converse is also true, but more 
stringent: the umbrella apex q lies on the intersection of its six adjacent, inverted 
paraboloids. This non-random coincidence indicates clearty the restrictions necessary 
to produce a froth 1141. Any set of C seeds (bodies) produces a Laguerre froth, 
specified by 3C coordinates (2, z )  in two dimensions. But the froth has V = 2C 
vertices, which would have required 4C coordinates if chosen independently. Note 
that independent orientation only of every interface (E = 3C) also gives the required 
number of degrees of freedom. Physically, edge orientation (crack) may be the rele- 
vant degree of freedom in brittle fragmentation or geological jointing processes. 

Duality yields the driving forces on the hot points (seeds), if the energy E is 
proportional to the total interfacial length, as is clearly the case in soap froths (surface 
tension) and in metallurgical aggregates (grain boundary energy), less obviously so 
in fluids. Displacement of a seed paraboloid q displaces, geometrically, the nearby 
vertex paraboloids q*, hence changes the interfacial length and the energy of the 
froth. This produces a force F = -V,E on q. Neighbouring seeds are Iixed, so 
that only the n-sided central cell q is deformed, with its vertices sliding on the k e d  
incident interfaces (n degrees of freedom to minimize the energy cost of moving q. 

Laguerre’s froth, with paraboloid seeds [14] constitutes therefore an excellent 
model for understanding and simulating the dynamics of a cellular structure. It iden- 
tifies the independent degrees of freedom (cells, hot points in one extra dimension), 
generates elementary topological transformation by simple, local motion, and com- 
putes the forces by a realistic, local geometric algorithm. In a cylindrical container, 
it should relax to the DAISY ground state of section 4, even in the limit of negligible 
shear. but this remains to be tested. 

6. Conclusions 

A crystallographic representation of cellular convective structures in cylindrical sym- 
metry or under shear has been presented. The Latom$ are the hot points, cells of the 
froth. Structural integrity is only disturbed by elementary topological transformations. 
m generate structural defects (pairs of dislocations) atid make them move (glide 
by TI, climb by cellular division). Global (ground state structure, dislocation glide 
on grain boundaries), and local (Laguerre-Rlley modelling of the cellular structure) 
analyses of the structure, its stability and its dynamics have been presented. 

l k o  tests remain to be carried out: 

(i) ’Ib obtain experimentally DAISY as the structure taken up by Benard-Marangoni 
convection at a higher rate of shear. 

(U) To combine global and local analyses, by calculating the ground state of the 
Laguerre froth in cylindrical symmetry, or by melting the DAISY through thermal 
fluctuations under Laguerre-Rlley dynamics. (This was done in reference [lo] by 
imposing random fluctuations of the cell’s seeds position z only, neglecting forces.) 

The experimental status, as of June 1991, in so far as I am aware, is as follows: 
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(i) Full alignment of dislocations on circles has not been observed under weak 
shear due to the earth’s Coriolis force, and not yet under a higher rate of shear 
(M Howald and R Huguenin (Lausanne), private communication, C Boon (Imperial 
College), private communcation). Here, we face a technical problem. The structure is 
not sheared in the two extreme situations, either if it is locked to the rotating container 
(if the walls are rough or the heating inhomogeneous, as in Boon’s experiment), or if, 
conversely, it remains stationary (apart from the earth’s Coriolis effect) with respect 
to the laboratory while the container is rotating, l i e  the Foucault pendulum to a 
galactic observer. By contrast, the Marseille [7l and Lausanne structures rotate with 
respect to the container and the laboratory, and may weU be the optimal situation 
where shear is maximized. (See footnote$.) 

(ii) ’Elley [14] did successfully simulate the dynamics of polycrystalline aggregates 
(sintering process). Some analytical results have been obtained [26]. But this has yet 
to be applied to B6nard convection cells. 

(iii) Noever [27] has shown recently that colonies of protozoa exhibited cellular 
patterns due to Rayleigh-’bylor instability. They have been studied under varying 
gravity field, but not yet in rotation. 

(iv) The dynamics of a single topological defect, and the interaction between two 
defects in a fluid described by a complex Ginzburg-Landau equation, has recently 
been studied experimentally, theoretically and in simulations [28]. These studies 
show that a topological defect is a valid concept and dynamical object, but do not 
shed light on the spatial organization of many defects in a frustrated (and sheared) 
situation. 
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